RecA can stimulate the relaxation activity of topoisomerase I: Molecular basis of topoisomerase-mediated genome-wide transcriptional responses in Escherichia coli

نویسندگان

  • Amy R. Reckinger
  • Kyeong Soo Jeong
  • Arkady B. Khodursky
  • Hiroshi Hiasa
چکیده

The superhelicity of the chromosome, which is controlled by DNA topoisomerases, modulates global gene expression. Investigations of transcriptional responses to the modulation of gyrase function have identified two types of topoisomerase-mediated transcriptional responses: (i) steady-state changes elicited by a mutation in gyrase, such as the D82G mutation in GyrA, and (ii) dynamic changes elicited by the inhibition of gyrase. We hypothesize that the steady-state effects are due to the changes in biochemical properties of gyrase, whereas the dynamic effects are due to an imbalance between supercoiling and relaxation activities, which appears to be influenced by the RecA activity. Herein, we present biochemical evidence for hypothesized mechanisms. GyrA D82G gyrase exhibits a reduced supercoiling activity. The RecA protein can influence the balance between supercoiling and relaxation activities either by interfering with the activity of DNA gyrase or by facilitating the relaxation reaction. RecA has no effect on the supercoiling activity of gyrase but stimulates the relaxation activity of topoisomerase I. This stimulation is specific and requires formation of an active RecA filament. These results suggest that the functional interaction between RecA and topoisomerase I is responsible for RecA-mediated modulation of the relaxation-dependent transcriptional activity of the Escherichia coli chromosome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli.

Type I DNA topoisomerases are ubiquitous enzymes involved in many aspects of DNA metabolism. Escherichia coli possesses two type I topoisomerase activities, DNA topoisomerase I (Topo I) and III (Topo III). The gene encoding Topo III (topB) can be deleted without affecting cell viability. Cells possessing a deletion of the gene encoding Topo I (topA) are only viable in the presence of an additio...

متن کامل

Analysis of Pleiotropic Transcriptional Profiles: A Case Study of DNA Gyrase Inhibition

Genetic and environmental perturbations often result in complex transcriptional responses involving multiple genes and regulons. In order to understand the nature of a response, one has to account for the contribution of the downstream effects to the formation of a response. Such analysis can be carried out within a statistical framework in which the individual effects are independently collect...

متن کامل

Bacillus cereus DNA topoisomerase I and IIIα: purification, characterization and complementation of Escherichia coli TopoIII activity

The Bacillus cereus genome possesses three type IA topoisomerase genes. These genes, encoding DNA topoisomerase I and IIIalpha (bcTopo I, bcTopo IIIalpha), have been cloned into T7 RNA polymerase-regulated plasmid expression vectors and the enzymes have been overexpressed, purified and characterized. The proteins exhibit similar biochemical activity to their Escherichia coli counterparts, DNA t...

متن کامل

An atypical type II topoisomerase from Mycobacterium smegmatis with positive supercoiling activity.

Topoisomerases are essential ubiquitous enzymes, falling into two distinct classes. A number of eubacteria including Escherichia coli, typically contain four topoisomerases, two type I topoisomerases and two type II topoisomerases viz. DNA gyrase and topoisomerase IV. In contrast several other bacterial genomes including mycobacteria, encode for one type I topoisomerase and a DNA gyrase. Here w...

متن کامل

Role of the Water–Metal Ion Bridge in Mediating Interactions between Quinolones and Escherichia coli Topoisomerase IV

Although quinolones have been in clinical use for decades, the mechanism underlying drug activity and resistance has remained elusive. However, recent studies indicate that clinically relevant quinolones interact with Bacillus anthracis (Gram-positive) topoisomerase IV through a critical water-metal ion bridge and that the most common quinolone resistance mutations decrease drug activity by dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007